
1.
2.
3.
4.

streaming-xbox/Implementation

Streaming Measurement in streaming-xbox

 This chapter describes the basic use of the sensor for the measurement of streaming content.

Right-Click on "References"
Click on "Add Reference"
Click on "Browse..." and open " "kantarmedia-streaming-xbox.dll

Lifecycle of the Measurement

 for mea s This chapter the explains use of the sensor suring the treaming content . The following are necessary things to know when using the
sensor.

 of Create instance sensor
Implementation of the adapter
Beginning of the measurement

 End of the measurement

Special Cases

Before getting into the measurement , Below are certain cases/events, which will pause/stop measurement.

Stopping of all streams

the app is closed
the app is not visible (minimized)

This will stop all measurement and finalize all running streams.

Stopping of certain stream

the window containing the media which is played is minimized (send to background)
the window containing the media which is played is turned invisible

This will only stop the stream in the concerning window, other streams are not affected.

Creating Instance of Sensor

 can only When you start the app the sensor be instantiated once. It is not possible to change the site name or the application name during the
measurement.

String site = ...; // will delivered by the measurement provider
KMStreamingSensor<IStreamAdapter> sensor =
KMStreamingSensor<IStreamAdapter>.getInstance(site);

Implementation of the Adapter

 In principle it is possible to measure any media library , thatwith an adapter is available within an app to use streaming content .

 I Therefore the protocol Meta and the interface StreamAdapter must be implemented. T he meta object supplies the information regarding the pl
 ayer(pl,plv) and the screen(sx,sy).

The library must be able to read continuously the on a stream/playercurrent position in seconds.

//Implement Imeta && IStreamAdapter interfaces

 class ExampleAdapter : IStreamAdapater
 {
 class TestMeta : IMeta
 {
 public string getPlayerName()
 {
 return "ThePlayer";
 }

 public string getPlayerVersion()
 {
 return "1.0";
 }
 public int getScreenHeight()

If any streams that are stopped due to special events mentioned above and should be measured again, the method has to beTrack
called again

 The site name is specified by the operator of the measurement system.

 {
 return getScreenHeightAsyncTask().Result;
 }

 public async Task<int> getScreenHeightAsyncTask()
 {
 int returnValue = 0;
 await ThreadHelper.ExecuteOnUIThread(() =>
 {
 returnValue =
unchecked((int)DisplayInformation.GetForCurrentView().ScreenHeightInRawP
ixels);
 });

 return returnValue;
 }

 public int getScreenWidth()
 {
 return getScreenWidthAsyncTask().Result;
 }

 public async Task<int> getScreenWidthAsyncTask()
 {
 int returnValue = 0;
 await ThreadHelper.ExecuteOnUIThread(() =>
 {
 returnValue =
unchecked((int)DisplayInformation.GetForCurrentView().ScreenWidthInRawPi
xels);
 });

 return returnValue;
 }
 }
 MediaPlayer mediaPlayer = null;
 IMeta meta = new TestMeta();

 public ExampleAdapter(MediaPlayer player)
 {
 mediaPlayer = player;
 }

 public int getDuration()
 {
 return
unchecked((int)mediaPlayer.PlaybackSession.NaturalDuration.TotalSeconds)
;
 }

 public int getHeight()
 {

 return
unchecked((int)mediaPlayer.PlaybackSession.NaturalVideoHeight);
 }

 public IMeta getMeta()
 {
 return meta;
 }

 public int getPosition()
 {
 int position =
unchecked((int)mediaPlayer.PlaybackSession.Position.TotalSeconds);
 return position;
 }

 public int getWidth()
 {
 return
unchecked((int)mediaPlayer.PlaybackSession.NaturalVideoWidth);

 }
 }

//Create stream adapter by implementing IStreamAdapter
var playerData = new ExampleAdapter(mediaElement.MediaPlayer);

Beginning of the Measurement

Create a Dictionary<String> to provide information of stream to be measured .

Below are the values that can be added inside dictionary

stream(mandatory),cq,ct,sx,sy

Dictionary<String, Object> dict = new Dictionary<string, object>();
dict.Add("stream","mystream");
dict.Add("cq", "4711"); //Add optional properties

Call track method

//Start tracking the stream
streams.Track(playerData, dict);

This finalizes the Stream and should be called any time the video is interrupted (i.e. application goes to background) or the video is finished.

//when finished stop the adapter
streams.Unload();

The above code in one block:

Stream is mandatory to start the measurement.

KMStreamingSensor<IStreamAdapter> streams =
KMStreamingSensor<IStreamAdapter>.getInstance("test")
mediaElement.Source = MediaSource.CreateFromUri(anUri);
//Create stream adapter
var playerData = new ExampleAdapter(mediaElement.MediaPlayer);
Dictionary<String, Object> dict = new Dictionary<string, object>();
//Add optional properties
dict.Add("cq", aName);
//Start tracking the stream
streams.Track(playerData, dict);

For a full example see streaming-example app

End of the Measurement

Call the unload method whenever app is closed. This call sends the current state of the measurements to the measuring system and then
 terminates all measurements.

KMStreamingSensor<IStreamAdapter> streams =
KMStreamingSensor<IStreamAdapter>.getInstance("test")
...
streamingSensor.Unload();

stop()

 measurement of streams is stopped automatically by library in the special cases mentioned above . If the user needs to stop/pause the
measurement in any other case, use the stop method on stream object

// start streaming measurement
var stream = streamingSensor.Track(playerData, dict);
...
// stop measurement programmatically
stream.Stop();

 If the stream should be measured again after the method has been calledstop , the method must track be called again.

	streaming-xbox/Implementation

